Lagrange Interpolation on a Lattice: Bounding Derivatives by Divided Differences*

Thomas Kunkie
Department of Mathematics, College of Charleston, Charleston, South Carolina 29424, U.S.A.
Communicated by Peter B. Borwein
Received February 5, 1991; revised August 1, 1991

Abstract

Fix an integer $n>0$. For a multivariate function defined on a (not necessarily rectangular) lattice, an extension is constructed to have, $\forall k \leqslant n$, derivatives of total degree k that are bounded by the function's tensor product divided differences of total degree k times a constant independent of the lattice and the function. The extension is locally constructed, can have any prescribed smoothness, and reproduces polynomials of degree $<n$ in each variable. © 1992 Academic Press. Inc

1. Introduction

We will extend this univariate result of Favard:
Let $M=\left(m_{i}\right)_{\infty}^{\infty}$ be a strictly increasing sequence in \mathbf{R} having no limit points and n a fixed positive integer. Suppose $f: M \rightarrow \mathbf{R}$ is given. By an extension, or interpolant, of f, we mean a $g \in C^{n}(\mathbf{R})$ whose restriction $:=$

$$
\left.g\right|_{M}: M \rightarrow \mathbf{R}: m \mapsto g(m)
$$

to M is f. A consequence of Rolle's theorem is that the nth derivative of any extension of f must take on the values

$$
\begin{equation*}
\left(n!\left[m_{i}, \ldots, m_{i+n}\right] f\right), \tag{1.1}
\end{equation*}
$$

where $\left[m_{i}, \ldots, m_{i+n}\right] f$ is an nth degree divided difference of $f ;$ locally, then, any extension's nth derivative necessarily has max norm \geqslant the absolute

[^0]maximum of (1.1). In [2, 3], Favard constructs an extension $E f$ of f whose nth derivative is not much larger than necessary, meaning
\[

$$
\begin{equation*}
\left|(E f)^{(n)}(x)\right| \leqslant C \max \left\{\left|\left[m_{i}, \ldots, m_{i+n}\right] f\right|: m_{i} \leqslant x \leqslant m_{i+n}\right\}, \tag{1.2}
\end{equation*}
$$

\]

with C a constant independent of f and M.
Now suppose that f is a function given on a lattice $M \subset \mathbf{R}^{d}$ (i.e., the image of \mathbf{Z}^{d} under an invertible $A \in \mathbf{R}^{d \times d}$) and that we extend f via the tensor product of Favard's scheme (i.e., we use Favard's scheme to extend f in each of the directions of the columns of A). On the surface, it would appear that the resulting extension would simply have its \boldsymbol{n} th derivative in the directions of A 's columns bounded by the data's \mathbf{n} th divided differences in these directions. By n th, we mean of degree n in each direction. However, much more is true: each of the extension's nth total degree derivatives in the standard directions can be bounded by nth total degree divided differences in suitably chosen directions times a constant that depends only on n and d. The precise result is found in the last section of this paper.

Favard's univariate result had been applied in [5] to error analysis of numerical ordinary differential equations. With a multivariate generalization, one should be able to formulate similar applications to numerical pde.

We denote Favard's univariate extension operator by E; we will refer to its d-fold tensor product by F. An outline of their discussion is as follows:

We introduce notation in Section 2 and some important identities in Section 3. We prove our main result by considering successive increasingly general cases. In Section 4 we deal with the special case that $M=\mathbf{Z}^{d}$. In Section 5, we discuss the case $M=A \mathbf{Z}^{d}$ where A is diagonal. Finally, in Section 6, we remove all restrictions on A other than its invertibility. We state there our most general result. Section 7 contains some concluding remarks.

Some important properties of $F f$ are that it

- depends locally on f,
- can be made smooth to any prescribed order,
- reproduces a certain subspace of polynomials, and most important,
- has, $\forall k \leqslant n, k$ th derivatives that are no more than a constant (independent of M) times some k th differences of f.

2. Notation

We denote intervals on the real line by $[a, b]$, with usual conventions for open and closed intervals. We refer to the i th coordinate of $x \in \mathbf{R}^{d}$ as x_{i}. For x, y in $\mathbf{R}^{d}, x \leqslant y$ means that $\forall i, x_{i} \leqslant y_{i}$.

Elements of \mathbf{Z}^{d} are called multiintegers, or integers when the context makes this unambiguous. Elements of $\mathbf{Z}_{+}^{d}:=\left\{\alpha \in \mathbf{Z}^{d}: \alpha \geqslant 0\right\}$ are called multiindices, usually denoted α, β, or γ. Define $|\alpha|:=\sum \alpha_{i}, \alpha!:=\prod \alpha_{i}!$, and the monomials by

$$
()^{\alpha}: \mathbf{R}^{d} \rightarrow \mathbf{R}: x \mapsto x^{\alpha}:=\prod x_{i}^{\alpha_{i}} .
$$

Letting \mathbf{n} stand for the multiindex with $\mathbf{n}_{i}=n$ for all i, the space of polynomials of degree $<n$ in each variable, is denoted

$$
\Pi_{<\mathbf{n}}:=\Pi_{<\mathbf{n}}\left(\mathbf{R}^{d}\right):=\operatorname{span}\left\{()^{\alpha}: \alpha<\mathbf{n}\right\} .
$$

We refer to the j th column of a matrix A as A_{j} and its typical element as $A_{i j}$. The j th standard unit vector(i.e., the j th column of the identity matrix) is therefore I_{j}.
D stands for the gradient. We find it convenient to think of it as a (column) vector in \mathbf{R}^{d}, so that D_{i} is the derivative in the direction I_{i}, and the gradient of derivatives in the directions of the columns of A is $D_{A}:=A^{\mathrm{T}} D$. The monomial differential operators are written

$$
D^{\alpha}:=\prod D_{i}^{\alpha_{i}}
$$

We say that D^{α} and ($)^{\alpha}$ are of degree α, of degree α_{i} in the i th variable, and of total degree $|\alpha|$.

We make frequent use of translations and linear changes of variable; to facilitate this, define for $x \in \mathbf{R}^{d}$ and for $A \in \mathbf{R}^{d \times d}$ the operators

$$
T_{x}: f \mapsto f(\cdot+x)
$$

and

$$
S_{A}: f \mapsto f(A \cdot)
$$

By K or K^{\prime} we will always mean a compact set in \mathbf{R}^{d}. By $\|\cdot\|_{K}$ we denote the max norm on K, or K norm. If the domain of f does not include all of K, then $\|f\|_{K}$ is interpreted to mean $\|f\|_{K \cap \operatorname{dom} f}$. If $\left\{f^{j}: j \in J\right\}$ denotes a finite collection of functions, then define

$$
\left\|f^{j}\right\|_{K}^{J}:=\max _{J}\left\|f^{j}\right\|_{K} .
$$

When writing inequalities, we will not distinguish between different constants that are independent of M and f, referring instead to every such constant as C.

For β a multiindex, we denote by \diamond^{β} a β th degree tensor product divided difference having integer support:

$$
\diamond^{\beta}:=\left[0,1, \ldots, \beta_{1}\right] \otimes\left[0,1, \ldots, \beta_{2}\right] \otimes \cdots \otimes\left[0,1, \ldots, \beta_{d}\right]
$$

Other divided differences with integer support are obtained by translation:

$$
\diamond_{z}^{\beta}:=\diamond^{\beta} T_{z} .
$$

In what follows, "divided difference" will sometimes be shortened to "difference." At no time will we mean by this the undivided "finite differences" often used in approximation theory.

By N^{k} we denote the (univariate) Newton polynomial

$$
N^{k}(x):=x(x-1)(x-2) \cdots(x-k+1),
$$

and by N_{z}^{k} its translate $T_{-z} N^{k}$. Thus, in our notation, the Newton form of the polynomial of degree $<n$ that agrees with a function g at $\{0,1, \ldots, n-1\}$ is

$$
P g:=\sum_{0}^{n-1} N^{k} \diamond^{k} g .
$$

To interpolate at $\{z, \ldots, z+n-1\}$, one would use the operator $P_{z}:=T_{-z} P T_{z}$.

3. A Divided Difference Identity

We establish an identity concerning these divided differences. To begin, note that differences compound; that is, if we apply a γ th divided difference to the function

$$
\begin{equation*}
f^{\beta}: z \mapsto \diamond_{z}^{\beta} f, \tag{3.1}
\end{equation*}
$$

the result is a multiple of a $(\gamma+\beta)$ th difference of f. In particular,

$$
\begin{equation*}
\diamond_{u}^{\gamma} f^{\beta}=\binom{\gamma+\beta}{\gamma} \diamond_{u}^{\gamma+\beta} f, \tag{3.2}
\end{equation*}
$$

as can be proven by induction. (Here the multinomial coefficient is given by ($\gamma+\beta$)! $/ \gamma!\beta!$)

Because \diamond_{μ}^{γ} is a linear combination of point evaluations with coefficients
independent of the integer u, there exists C depending only on n and d such that for all $\gamma \leqslant \mathbf{n}$ and for all integers u

$$
\left|\diamond_{u}^{\gamma} f\right| \leqslant C \max \left\{|f(x)|: x \in \operatorname{supp} \diamond_{u}^{\gamma}\right\} .
$$

We combine this with (3.2) and the finiteness of $K \cap \mathbf{Z}^{d}$ for every K to yield our
(3.3) Identity. There exists a constant C depending only on n and d such that for every K and for every $\alpha \leqslant \beta \leqslant \mathbf{n}$ there is a K^{\prime} so that

$$
\left\|f^{\beta}\right\|_{K} \leqslant C\left\|f^{x}\right\|_{K^{\prime}}
$$

4. The Case $M=\mathbf{Z}^{d}$

In this section we give a construction of Favard's extension $E f$ in the special case that $M=\mathbf{Z}^{d}$. It will be assumed throughout that f is a function with this domain.

Let $\psi \in C_{c}^{n}(\mathbf{R})$ have support $[-1,1]$ and satisfy $\sum_{\mathbf{z}} T_{z} \psi=1$. We sometimes call $\psi_{z}:=T_{-z} \psi$ a weight function.

We define the extension operator E as a weighted average of the local interpolation operators $\left(P_{z}\right)$:

$$
\begin{equation*}
E:=\sum_{\mathbf{Z}} \psi_{z} P_{z} . \tag{4.1}
\end{equation*}
$$

To interpolate to data f given on \mathbf{Z}^{d}, we use the operator

$$
F:=\overbrace{E \otimes \cdots \otimes E}^{d}
$$

Like E, F is the weighted average of local polynomial projectors. To write it as such, we set Ψ equal to the tensor product of d copies of ψ and R equal to the tensor product of the same number of operators P. For z a multiinteger, $\Psi_{z}:=T_{-z} \Psi$, and $R_{z}:=T_{-z} R T_{z}$, so that R_{z} is the interpolation projector whose range is $\prod_{<n}$ and whose interpolation conditions are point evaluations at $\{z+u: 0 \leqslant u<\mathbf{n}\}$. Then

$$
\begin{equation*}
F=\sum_{\mathbf{Z}^{d}} \Psi_{z} R_{z} \tag{4.2}
\end{equation*}
$$

From (4.2) we can see several properties of F. First, the restriction of F to $\Pi_{<\mathbf{n}}$ is the identity, since the same can be said of each R_{z}. Second, Ff is as smooth as Ψ, at least in C^{n}. Third, $F f$ depends locally on f, since the
coefficient of Ψ_{z} depends only on f 's values near z and Ψ has compact support.

Most important for our purposes, we have this
(4.3) Theorem. Depending only on n, d, and our choice of ψ, there is a constant C such that for every $\alpha \leqslant \mathbf{n}$, if $\left\|f^{\alpha}\right\|_{\infty}<\infty$, then

$$
\begin{equation*}
\left\|D^{\alpha} F f\right\|_{\infty} \leqslant C\left\|f^{\alpha}\right\|_{\infty} \tag{4.3.a}
\end{equation*}
$$

If f^{α} is not bounded, then it still holds that $\forall K \exists K^{\prime}$ such that

$$
\begin{equation*}
\left\|D^{\alpha} F f\right\|_{K} \leqslant C\left\|f^{\alpha}\right\|_{K^{\prime}} . \tag{4.3.b}
\end{equation*}
$$

Note that while the computation of $F f$ uses divided differences of f of total degree $>n$, these differences do not affect the interpolant's nth derivatives.

To begin the proof of (4.3), note that since $F f$ depends locally on f, its restriction to K depends only on finitely many values of f. Therefore (4.3.a) implies (4.3.b) for some K^{\prime}. Without loss of generality we can assume that $\left\|f^{\beta}\right\|_{\infty}<\infty$ for every $\beta \leqslant \mathbf{n}$.

It will suffice to prove $\exists C \forall z \in \mathbf{Z}^{d}$

$$
\begin{equation*}
\left\|D^{\alpha} F f\right\|_{z+[0,1]^{d}} \leqslant C\left\|f^{\alpha}\right\|_{\infty} . \tag{4.4}
\end{equation*}
$$

We show first the existence of such a C for $z=0$.
For purposes of evaluating E on $[0,1]$ it can be written

$$
\begin{equation*}
E=P+\psi_{1}\left(P_{1}-P\right)=\sum_{l<n} N^{\prime} \diamond^{\prime}+\psi_{1} N_{1}^{n-1} n \diamond^{n} . \tag{4.5}
\end{equation*}
$$

Since F is the tensor product of d copies of E, (4.5) allows us to write $F f$ on $[0,1]^{d}$ as a sum of divided differences of f times continuous functions:

$$
F f=\sum_{z, \beta} Q_{z}^{\beta} \diamond^{\beta} f .
$$

Here z ranges over $\{0,1\}^{d}, \beta$ over multiindices $\leqslant \mathbf{n}$, and Q_{z}^{β} is the product of Newton polynomials and weight functions. When computing the sum's α th derivative, we need sum only over $\beta \geqslant \alpha$, for if $\beta_{i}<\alpha_{i} \leqslant n$, then in the i th variable Q_{z}^{β} is a polynomial of degree β_{i} and therefore has α th derivative equal zero. With this restriction, we see that $F f$ is a linear combination of smooth functions with coefficients of the form

$$
\left\{\nabla^{\beta} f: \beta \geqslant \alpha\right\} .
$$

Thus in the $[0,1]^{d}$ norm,

$$
\begin{align*}
\left\|D^{\alpha} F f\right\| & \leqslant\left\|f^{\beta}\right\|_{\infty}^{\alpha \leqslant \beta \leqslant n} \sum_{z, \beta}\left\|D^{\alpha} Q_{z}^{\beta}\right\| \\
& \leqslant C\left\|f^{\alpha}\right\|_{\infty} \tag{4.6}
\end{align*}
$$

(The last inequality is by (3.3).) Thus (4.4) holds for $z=0$.
For z other than 0 , note that $F=T_{-z} F T_{z}$, and that

$$
\begin{equation*}
\left\|D^{\alpha} F f\right\|_{z+[0,1]^{d}}=\left\|D^{\alpha} F T_{z} f\right\|_{[0,1]^{d}} \leqslant C\left\|\left(T_{z} f\right)^{\alpha}\right\|_{\infty}=C\left\|f^{\alpha}\right\|_{\infty}, \tag{4.7}
\end{equation*}
$$

and for general z, (4.4) holds with the same constant as when $z=0$. This completes the proof of (4.3).

In (4.6) appears the influence of ψ on (4.3)'s constant. One reduces that constant by choosing ψ so as to reduce the derivatives of products Q_{z}^{β} of Newton polynomials and weight functions. [1] discusses this choice for the univariate extension (in the original terms of Favard's construction).

$$
\text { 5. The CASE } M=\operatorname{diag}(a) \mathbf{Z}^{d}
$$

We now examine the more general case where the interpolation points M form the lattice $\operatorname{diag}(a) \mathbf{Z}^{d}$ for $a \in \mathbf{R}^{d}$ positive. Throughout this section it will be understood that f is given on this M.

For shorthand, we let

$$
S_{a}:=S_{\mathrm{diag}(a)}
$$

We obtain an interpolation scheme for this M by scaling. Specifically, define

$$
F^{a}:=S_{a}^{-1} F S_{a}
$$

and define the tensor product divided differences

$$
\diamond_{z, a}^{\alpha}:=a^{-\alpha} \diamond_{z}^{\alpha} S_{a}
$$

We again use the notation f^{β} to denote a function on M :

$$
\begin{equation*}
f^{\beta}: \operatorname{diag}(a) z \mapsto \diamond_{z, a}^{\beta} f \tag{5.1}
\end{equation*}
$$

(5.1) is not meant to overwrite the meaning we gave f^{β} in (3.1), a function on the integers. g^{β} will be understood to be a function with the same domain as g, whether \mathbf{Z}^{d} or $\operatorname{diag}(a) \mathbf{Z}^{d}$, obtained by taking differences in the directions (I_{j}).

Theorem (4.3) has the following
(5.2) Corollary. With C the same constant appearing in (4.3), for every multïndex $\alpha \leqslant \mathbf{n}$ and for every K we have a K^{\prime} such that

$$
\left\|D^{\alpha} F^{a} f\right\|_{K} \leqslant C\left\|f^{\alpha}\right\|_{K^{\prime}} .
$$

Its proof is trivial; again, it will suffice to assume that f^{*} is bounded. Then in the sup-norm,

$$
\begin{aligned}
\left\|D^{\alpha} S_{a}^{-1} F S_{a} f\right\| & =a^{-\alpha}\left\|D^{\alpha} F S_{a} f\right\| \\
& \leqslant a^{-\alpha} C\left\|\left(S_{a} f\right)^{\alpha}\right\| \\
& =C\left\|f^{\alpha}\right\| .
\end{aligned}
$$

6. The Case $M=A \mathbf{Z}^{d}$

Finally we address the interpolation problem for $M=A \mathbf{Z}^{d}$ for an invertible $A \in \mathbf{R}^{d \times d}$. We assume throughout this section that f has this domain.
To relate the general lattice to those on which we already have a solution, we let U be the matrix obtained from A by dividing each column by its (Euclidean) length, and let a satisfy

$$
U \operatorname{diag}(a)=A .
$$

Then it is natural to define the interpolant

$$
F^{A}:=S_{U}^{-1} F^{a} S_{U}
$$

F^{4} will have the property that nth derivatives in the directions U will be bounded by some constant times nth divided differences in those directions formed from f 's values on $A \mathbf{Z}^{d}$. To be exact, using $D_{A} S_{B}=(B A)^{\mathrm{T}} S_{B} D$ we have $\forall K \exists K^{\prime}$

$$
\begin{equation*}
\left\|D_{U}^{\alpha} F^{A} f\right\|_{K}=\left\|D^{\alpha} F^{a} S_{U} f\right\|_{U^{-1} K} \leqslant C\left\|\left(S_{U} f\right)^{\alpha}\right\|_{K^{\prime}} . \tag{6.1}
\end{equation*}
$$

However, the derivatives D_{U}^{α} that appear in (6.1) depend on our mesh; it is possible to improve (6.1) by replacing the directional derivatives by the ordinary ones D^{α}.

Define the matrix norm

$$
\|U\|:=\max \left|U_{i j}\right| .
$$

From $D=\left(U^{-1}\right)^{T} D_{U}$ it follows that for smooth g

$$
D_{j}^{k}=\sum_{|, \gamma|=k}\binom{k}{y}\left(U^{-1}\right)_{j}^{\gamma} D_{U}^{\gamma}
$$

and

$$
\begin{equation*}
\left|D^{\gamma} g\right| \leqslant C\left\|U^{-1}\right\|^{|\gamma|} \max _{|\beta|=|\gamma|}\left|D_{U}^{\beta} g\right|, \tag{6.2}
\end{equation*}
$$

so that to bound D^{α} in terms of $\left\{D_{U}^{\beta}\right\}$, with a constant independent of the lattice, we need a bound (in terms of n and d only) on $\left\|U^{-1}\right\|$. While this is obviously impossible for arbitrary A, it is possible for arbitrary lattices; the lattice $A \mathbf{Z}^{d}$ can also be written $B \mathbf{Z}^{d}$ for many B other than A. (Any such a B is called a basis for the lattice.) A result from the geometry of numbers guarantees us for every A the existence of a basis $B=B(A)$ satisfying

$$
\begin{equation*}
\sup _{A}\left|\frac{\prod\left\|B_{j}\right\|_{2}}{\operatorname{det} B}\right|<\infty \tag{6.3}
\end{equation*}
$$

(This quotient can be taken as a measure of the skewness of the columns of B.) One can construct B so that for $d \geqslant 5$, this supremum is less than

$$
\left(\frac{2}{\sqrt{\pi}}\right)^{d} \Gamma\left(\frac{d+1}{2}\right)\left(\frac{5}{4}\right)^{(1 / 4)(d-3)(d-4)} .
$$

See [4, p. 65] for this advanced result. It is much simpler to arrive at a higher upper bound; i.e., one can construct B so that for $d \geqslant 2$ the supremum in (6.3) is bounded by

$$
2^{-d} \prod_{i=1}^{d}\left(1+3^{i}\right)
$$

For a short proof of this, see [4, pp. 126-128]. A fact of practical interest is that one can program a computer to perform both of these constructions.

Choosing in this way a new basis B for the lattice $A \mathbf{Z}^{d}$, we reset $a_{j}:=\left\|B_{j}\right\|_{2}$ and $U:=B \operatorname{diag}(a)^{-1}$. By (6.3), $|\operatorname{det} U|^{-1}$ is bounded independent of A, and by Cramer's rule and the fact that U has unit columns, so is $\left\|U^{-1}\right\|$. Thus for some constant independent of A and for any K

$$
\left\|D^{\alpha} g\right\|_{K} \leqslant C\left\|D_{U}^{\beta} g\right\|_{K}^{|\beta|=|\alpha|}
$$

Combining this with (6.1) we have this
(6.4) Theorem. There is a constant C depending only on our choice of ψ such that for every α with $|\alpha| \leqslant n$ and every K there is a K^{\prime} with

$$
\left\|D^{\alpha} F^{B} f\right\|_{K} \leqslant C\left\|\left(S_{U} f\right)^{\beta}\right\|_{K^{\prime}}^{|\beta|=|\alpha|}
$$

7. Concluding Remarks

If supp $\psi \subseteq[-1, n]$, then (4.3), (5.2), and (6.4) would still hold (as long as $\sum_{\mathbf{z}} \psi_{z}=1$), albeit with a more complicated proof. In [1], de Boor takes advantage of this to reduce the constant appearing in (1.2).

Since most lattices of interest to numerical analysts are rectangular, Corollary (5.2) may be as important as Theorem (6.4). That in this setting one needs only f^{α} to bound $D^{\alpha} F^{a} f$ (and not other differences of total degree $|\alpha|)$ and that one can do this for all $\alpha \leqslant \mathbf{n}$ simultaneously is probably the result of M 's great regularity. Such strong results might be too much to ask in a generalization of Favard's result to other interpolation point sets.

It is not difficult to extend this scheme to the case where data are given only on the lattice points within a parallelogram with sides in the directions of the basis B. To extend the scheme to data given only on lattice points within other domains presents a problem.

There exist other generalizations of Favard's scheme of the form (4.2) for Lagrange data on lattice. Those investigated to date fail to provide a (1.2)like bound without a constant that depends on the aspect ratio of the lattice.

We mention here without proof that $F^{a} g$ (and more generally $F^{B} g$) has nth order local accuracy when used to approximate a function g in C^{n} from $\left.g\right|_{M}$. This is a direct consequence of the fact that $F=I$ on $\Pi_{<n}$. For every $k<n$, the extension's derivatives of total degree k approximate the corresponding derivatives of g with local approximation order $n-k$.

References

1. C. de Boor, A smooth and local interpolant with "small" k th derivative, in "Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations" (A. K. Aziz, Ed.), pp. 177-197, Academic Press, New York, 1974.
2. C. DE Boor, How small can one make the derivatives of an interpolating function? J. Approx. Theory 13 (1975), 105-116.
3. J. Favard, Sur l'interpolation, J. Math. Pures Appl. 19 (1940), 281-300.
4. C. G. Lekkerkerker, "Geometry of Numbers," Wiley, New York, 1969.
5. H. O. Kreiss, Difference approximations for singular perturbation problems, in "Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations" (A. K. Aziz, Ed.), pp. 199-211, Academic Press, New York, 1974.

[^0]: * This material is based upon work supported in part by the National Science Foundation under Grant DMS-8701275.

