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Fix an integer n > O. For a multivariate function defined on a (not necessarily
rectangular) lattice, an extension is constructed to have, 'Vk ~ n, derivatives of total
degree k that are bounded by the function's tensor product divided differences of
total degree k times a constant independent of the lattice and the function. The
extension is locally constructed, can have any prescribed smoothness, and
reproduces polynomials of degree < n in each variable. © 1992 Academic Press. Inc.

1. INTRODUCTION

We will extend this univariate result of Favard:
Let M = (m;)OO 00 be a strictly increasing sequence in R having no limit

points and n a fixed positive integer. Suppose f: M ---+ R is given. By an
extension, or interpolant, off, we mean agE Cn(R) whose restriction '-

to M is f A consequence of Rolle's theorem is that the nth derivative of
any extension of f must take on the values

(n! [m i, ,.. , mi+nJf), (1.1 )

where [mi, ..., mi+nJfis an nth degree divided difference off; locally, then,
any extension's nth derivative necessarily has max norm ~ the absolute
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maximum of (1.1). In [2, 3], Favard constructs an extension Ef of f whose
nth derivative is not much larger than necessary, meaning

I(Ef)(n) (x) I~ C max{ IEm;, ..., mi+ n]fl: m; ~ x ~ m;+n}, (1.2)

with C a constant independent of f and M.
Now suppose that f is a function given on a lattice Me Rd (i.e., the

image of Zd under an invertible A E RdXd) and that we extend f via the
tensor product of Favard's scheme (i.e., we use Favard's scheme to extend
f in each of the directions of the columns of A). On the surface, it would
appear that the resulting extension would simply have its nth derivative in
the directions of A's columns bounded by the data's nth divided differences
in these directions. By nth, we mean of degree n in each direction.
However, much more is true: each of the extension's nth total degree
derivatives in the standard directions can be bounded by nth total degree
divided differences in suitably chosen directions times a constant that
depends only on nand d. The precise result is found in the last section of
this paper.

Favard's univariate result had been applied in [5] to error analysis of
numerical ordinary differential equations. With a multivariate generaliza
tion, one should be able to formulate similar applications to numerical pde.

We denote Favard's univariate extension operator by E; we will refer to
its d-fold tensor product by F. An outline of their discussion is as follows:

We introduce notation in Section 2 and some important identities in
Section 3. We prove our main result by considering successive increasingly
general cases. In Section 4 we deal with the special case that M = Zd. In
Section 5, we discuss the case M = AZd where A is diagonal. Finally, in
Section 6, we remove all restrictions on A other than its invertibility. We
state there our most general result. Section 7 contains some concluding
remarks.

Some important properties of Ff are that it

• depends locally on f,

• can be made smooth to any prescribed order,

• reproduces a certain subspace of polynomials, and most important,

• has, Vk ~ n, kth derivatives that are no more than a constant (inde
pendent of M) times some kth differences of f

2. NOTATION

We denote intervals on the real line by [a, b], with usual conventions for
open and closed intervals. We refer to the ith coordinate of x E R d as x;.
For x,y in R d

, x~y means that Vi,x;~y;.
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Elements of Zd are called multiintegers, or integers when the context
makes this unambiguous. Elements of Z: := {oc E Zd : oc ~ O} are called
multiindices, usually denoted oc, p, or y. Define loci := L oc" oc! := n oc,!, and
the monomials by

( t: Rd --+ R: x H x~ := Il X~i.

Letting 8 stand for the multiindex with 8, = n for all i, the space of polyno
mials of degree < n in each variable, is denoted

II <0 := II <0 (Rd):= span{( )~: oc < 8}.

We refer to the jth column of a matrix A as Aj and its typical element
as Aij. The jth standard unit vector(i.e., the jth column of the identity
matrix) is therefore I j •

D stands for the gradient. We find it convenient to think of it as a
(column) vector in Rd

, so that D, is the derivative in the direction I" and
the gradient of derivatives in the directions of the columns of A is
D A := ATD. The monomial differential operators are written

D~:= IlD~i.

We say that D~ and ( t are of degree oc, of degree oc, in the ith variable,
and of total degree loci.

We make frequent use of translations and linear changes of variable; to
facilitate this, define for x E Rd and for A E Rd x d the operators

and

By K or K' we will always mean a compact set in Rd. By II . II K we denote
the max norm on K, or K norm. If the domain off does not include all of
K, then IlfilK is interpreted to mean IlfllKndomf' If {P :jEJ} denotes a
finite collection of functions, then define

liP II 'k:= max liP II K'
J

When writing inequalities, we will not distinguish between different
constants that are independent of M and f, referring instead to every such
constant as C.
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For fJ a multiindex, we denote by 0 fl a fJ th degree tensor product divided
difference having integer support:

Other divided differences with integer support are obtained by translation:

In what follows, "divided difference" will sometimes be shortened to
"difference." At no time will we mean by this the undivided "finite
differences" often used in approximation theory.

By N k we denote the (univariate) Newton polynomial

Nk(x) :=x(x-l)(x-2) .,. (x-k+ I),

and by N; its translate T _zNk
• Thus, in our notation, the Newton form

of the polynomial of degree < n that agrees with a function g at
{O, I, ...,n-I} is

n-l

Pg:= L NkOkg.
o

To interpolate at {z, ..., z + n - 1}, one would use the operator
Pz := T -zPTz.

3. A DIVIDED DIFFERENCE IDENTITY

We establish an identity concerning these divided differences. To begin,
note that differences compound; that is, if we apply a yth divided difference
to the function

(3.1 )

the result is a multiple of a (y + fJ)th difference off In particular,

(3.2)

as can be proven by induction. (Here the multinomial coefficient is given
by (y+fJ)!/y!fJ!.)

Because 0 ~ is a linear combination of point evaluations with coefficients



98 THOMAS KUNKLE

independent of the integer u, there exists C depending only on nand d such
that for all y ~ n and for all integers u

I<>~fl ~Cmax{lf(x)I:XESUPP <>~},

We combine this with (3.2) and the finiteness of K n Zd for every K to yield
our

(3.3) IDENTITY. There exists a constant C depending only on nand d
such that for every K and for every C( ~ {3 ~ n there is a K' so that

IljPIIK~CIlrlIK"

4. THE CASE M = Zd

In this section we give a construction of Favard's extension Ef in the
special case that M = Z d. It will be assumed throughout that f is a function
with this domain.

Let I/J E C;(R) have support [ -1, 1] and satisfy Lz TzI/J = 1. We some
times call I/J z := T -zI/J a weight function.

We define the extension operator E as a weighted average of the local
interpolation operators (PJ:

(4.1 )

To interpolate to data f given on Zd, we use the operator

d
.......-..-..--

F:=E® .. · ®E;

Like E, F is the weighted average of local polynomial projectors. To write
it as such, we set 'I' equal to the tensor product of d copies of I/J and R
equal to the tensor product of the same number of operators P. For z a
multiinteger, 'Pz := T -z '1', and R z := T _zRTz' so that R z is the interpola
tion projector whose range is n < D and whose interpolation conditions are
point evaluations at {z + u: 0 ~ u < n}. Then

(4.2)

From (4.2) we can see several properties of F. First, the restriction of F to
n<D is the identity, since the same can be said of each R z • Second, Ffis
as smooth as '1', at least in C. Third, Ff depends locally on f, since the
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coefficient of 'Pz depends only on f's values near z and 'P has compact
support.

Most important for our purposes, we have this

(4.3) THEOREM. Depending only on n, d, and our choice of 0/, there is a
constant C such that for every a ~ n, if Ilr II ce < 00, then

II DaFfll ce ~ C Ilr II ce •

Ifr is not bounded, then it still holds that VK 3K' such that

(4.3.a)

(4.3.b)

Note that while the computation of Ff uses divided differences of f of
total degree > n, these differences do not affect the interpolant's nth
derivatives.

To begin the proof of (4.3), note that since Ff depends locally on f, its
restriction to K depends only on finitely many values off Therefore (4.3.a)
implies (4.3.b) for some K'. Without loss of generality we can assume that
II/P II co < 00 for every P~ n.

It will suffice to prove 3C I:/z E Zd

IIDaFfllz+ [O.l]d~ C Ilr II co'

We show first the existence of such a C for z = 0.
For purposes of evaluating Eon [0, 1J it can be written

(4.4 )

E=P+0/1(P1-P)= L N/O/+0/1N~-lnOn. (4.5)
I<n

Since F is the tensor product of d copies of E, (4.5) allows us to write Ff
on [0, 1Jd as a sum of divided differences ofI times continuous functions:

Here z ranges over {O, 1}d, Pover multiindices ~n, and Q~ is the product
of Newton polynomials and weight functions. When computing the sum's
ath derivative, we need sum only over P~ a, for if Pi < ai ~ n, then in the
ith variable Q~ is a polynomial of degree Pi and therefore has ath
derivative equal zero. With this restriction, we see that FI is a linear
combination of smooth functions with coefficients of the form
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Thus in the [0, I Jd norm,
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IID~Ffll:::; IlfPII~.;;p.;;n L IID~Q~II
z, P

(4.6)

(The last inequality is by (3.3).) Thus (4.4) holds for z = 0.
For z other than 0, note that F= T~zFTZ' and that

IID~Ffllz+ [0, l]d= IID~FTJII [0. l]d:::; C II(TJn 00 = C Ilr II 00' (4.7)

and for general z, (4.4) holds with the same constant as when z = 0. This
completes the proof of (4.3).

In (4.6) appears the influence of t/J on (4.3)'s constant. One reduces that
constant by choosing t/J so as to reduce the derivatives of products Q~ of
Newton polynomials and weight functions. [1 Jdiscusses this choice for the
univariate extension (in the original terms of Favard's construction).

5. THE CASE M = diag(a)Zd

We now examine the more general case where the interpolation points
M form the lattice diag(a)Zd for a E Rd positive. Throughout this section it
will be understood that f is given on this M.

For shorthand, we let

We obtain an interpolation scheme for this M by scaling. Specifically,
define

and define the tensor product divided differences

We again use the notation fP to denote a function on M:

fP: diag(a)z H 0 ~ at (5.1 )

(5.1) is not meant to overwrite the meaning we gave fP in (3.1), a function
on the integers. gP will be understood to be a function with the same
domain as g, whether Zd or diag(a)Zd, obtained by taking differences in
the directions (Ij)'

Theorem (4.3) has the following
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(5.2) COROLLARY. With C the same constant appearing in (4.3), for
every multiindex a ~ n and for every K we have a K' such that

IID~Ffll K ~ C Ilr II K"

Its proof is trivial; again, it will suffice to assume that.r is bounded.
Then in the sup-norm,

IID~S;IFSafll =a-~ IID~FSafll

~ a-~C II(Saftll

=C1lrll·

6. THE CASE M = AZd

Finally we address the interpolation problem for M = AZd for an inver
tible A E Rdx

d. We assume throughout this section that f has this domain.
To relate the general lattice to those on which we already have a solu

tion, we let U be the matrix obtained from A by dividing each column by
its (Euclidean) length, and let a satisfy

U diag(a) = A.

Then it is natural to define the interpolant

FA will have the property that nth derivatives in the directions U will be
bounded by some constant times nth divided differences in those directions
formed from f's values on AZd. To be exact, using DASB= (BA) T SBD we
have VK3K'

However, the derivatives D':J that appear in (6.1) depend on our mesh; it
is possible to improve (6.1) by replacing the directional derivatives by the
ordinary ones D~.

Define the matrix norm

IIUII :=max IUijl.

From D = (U- I
) TD u it follows that for smooth g
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and
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IDYgl ~ C II V-IIIIYI max ID~gl,
llil ~ IYI

(6.2)

so that to bound DIJ. in terms of {D ~}, with a constant independent of the
lattice, we need a bound (in terms of nand d only) on II V- 111. While this
is obviously impossible for arbitrary A, it is possible for arbitrary lattices;
the lattice AZd can also be written BZd for many B other than A. (Any
such a B is called a basis for the lattice.) A result from the geometry
of numbers guarantees us for every A the existence of a basis B = B(A)
satisfying

I
n IIBjllzj <sup d 00.

A etB
(6.3 )

(This quotient can be taken as a measure of the skewness of the columns
of B.) One can construct B so that for d ~ 5, this supremum is less than

See [4, p. 65] for this advanced result. It is much simpler to arrive at a
higher upper bound; i.e., one can construct B so that for d~ 2 the
supremum in (6.3) is bounded by

i=l

For a short proof of this, see [4, pp. 126-128]. A fact of practical interest
is that one can program a computer to perform both of these constructions.

Choosing in this way a new basis B for the lattice AZd
, we reset

aj := IIBjllz and V:= Bdiag(a)-I. By (6.3), Idet VI-I is bounded independ
ent of A, and by Cramer's rule and the fact that V has unit columns, so
is II V-III· Thus for some constant independent of A and for any K

Combining this with (6.1) we have this

(6.4) THEOREM. There is a constant C depending only on our choice oft/!
such that for every a with lal ~ n and every K there is a K' with
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103

If SUpp '" £; [ - 1, n], then (4.3), (5.2), and (6.4) would still hold (as long
as LZ '" z = 1), albeit with a more complicated proof. In [1], de Boor takes
advantage of this to reduce the constant appearing in (1.2).

Since most lattices of interest to numerical analysts are rectangular,
Corollary (5.2) may be as important as Theorem (6.4). That in this setting
one needs only.r to bound D~F'f (and not other differences of total degree
lexl) and that one can do this for all ex ~ n simultaneously is probably the
result of Ms great regularity. Such strong results might be too much to ask
in a generalization of Favard's result to other interpolation point sets.

It is not difficult to extend this scheme to the case where data are given
only on the lattice points within a parallelogram with sides in the direc
tions of the basis B. To extend the scheme to data given only on lattice
points within other domains presents a problem.

There exist other generalizations of Favard's scheme of the form (4.2) for
Lagrange data on lattice. Those investigated to date fail to provide a (1.2)
like bound without a constant that depends on the aspect ratio of the
lattice.

We mention here without proof that Fag (and more generally FBg) has
nth order local accuracy when used to approximate a function g in en from
gl M' This is a direct consequence of the fact that F = I on TI < n • For every
k < n, the extension's derivatives of total degree k approximate the corre
sponding derivatives of g with local approximation order n - k.
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